The James

THE OHIO STATE UNIVERSITY

Management of Ovarian Cancer

Casey Cosgrove, MD Gynecologic Oncology The Ohio State University / James Cancer Hospital Twitter @casecos Email – Casey.Cosgrove@osumc.edu

Creating a cancer-free world. One person, one discovery at a time.

 Describe the current management of early and advanced ovarian cancer

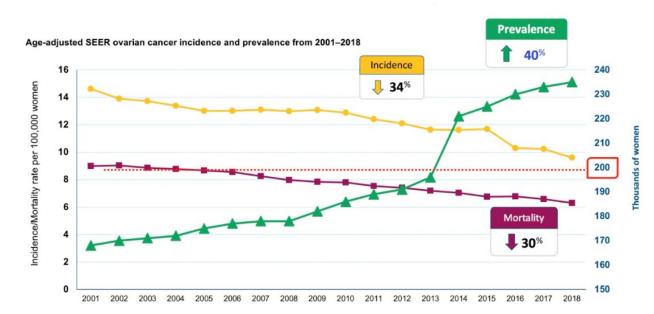
Review the most contemporary management updates in both surgical and medical management of ovarian cancer patients

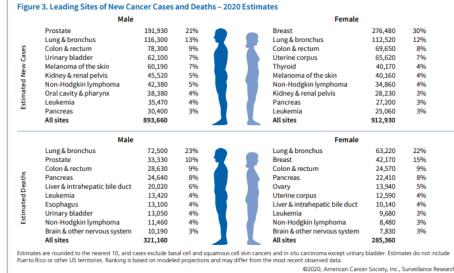
 Understand the role of genetic testing and genetics referral amongst ovarian cancer patients

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

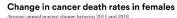
Disclosures

- UpToDate Honorarium for authorship
- GOG Partners Consultant
- Agenus Advisory Board
- Incyte Consultant
- Glaxo Smith Kline Advisory Board

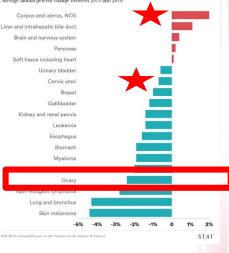

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute



COMPREHENSIVE CANCER CENTER


Ovarian Cancer

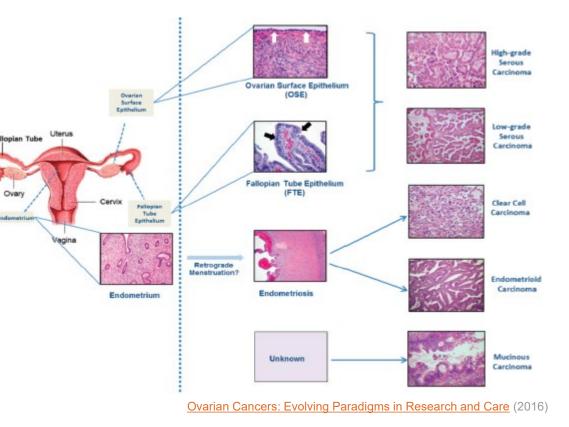
- Epithelial Ovarian Cancer (90%)
 - Less common Germ Cell, Sex-Cord Stromal
- <u>Leading</u> cause of death from GYN Cancer in US
 - For now
- 2020 estimates (US)
 - 21,750 new cases
 - 13,940 deaths
- 5 year survival is about 48%
- Incidence increases with age and is most prevalent in the sixth and seventh decades of life
- More then half present with distant disease
 - "Disease that whispers..."


The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

The James

COMPREHENSIVE CANCER CENTER

THE OHIO STATE UNIVERSITY


ive Cancer Center – ichard J. Solove

Ovarian Cancer VS Fallopian Tube VS Peritoneum

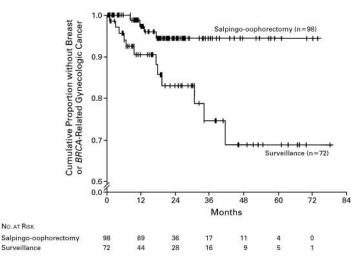
Epithelial subtypes

- Serous (Low vs High Grade) 80%
 - BRCA
 - Textbook OC
- Endometrioid (FIGO Grades 1,2,3)
 - BRCA (higher grade)
 - Lynch Syndrome
 - Endometriosis
- Clear cell
 - Endometriosis
 - Lynch Syndrome
- Mucinous
 - Good prognosis early stage
 - Poor outcomes advanced stage
 - CEA, CA-19-9
 - Rule out GI primary
- Borderline tumors/LMP/Atypical Proliferative
 - Surgically managed

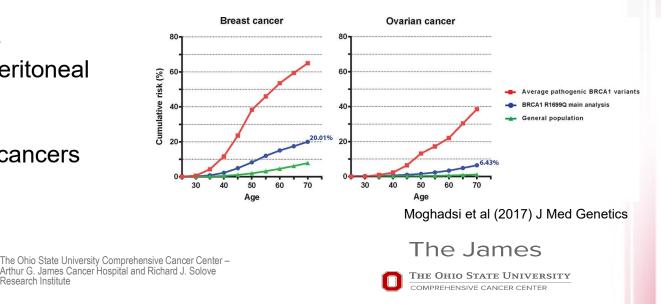
The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

The James

COMPREHENSIVE CANCER CENTER

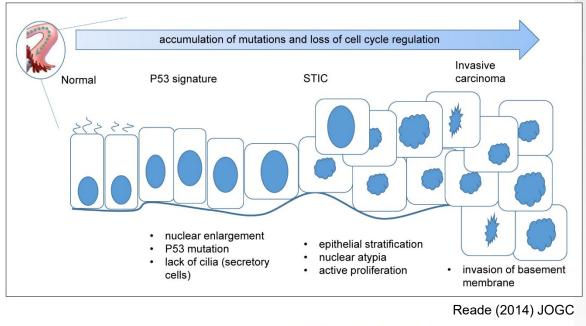

Epithelial Ovarian Cancers Need Genetics!

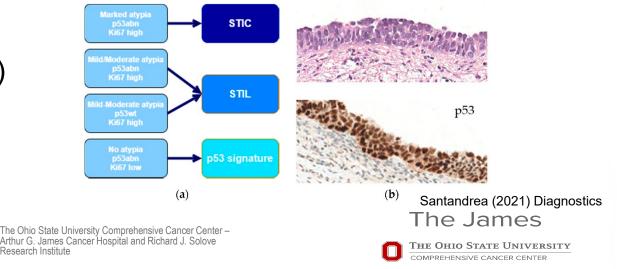
- ~20% of ovarian cancers have a hereditary component
 - BRCA 1 or 2 most common (~15%)
 - Lynch second most common cause of hereditary OC
 - Many other genes implicated (ATM, BRIP1, PALB2, RAD51 etc)
- Family history independent of gene mutation
 - First degree relative increases risk two-fold


Risk reducing surgery for high risk patients

- Reduced risk of breast, ovarian, fallopian and peritoneal cancers
- Occult cancer can be identified is $\sim 5\%$
- Residual risk for developing primary peritoneal cancers (<4%)

Research Institute


Kauff et al (2002) NEJM



Serous Tubal Intraepithelial Carcinoma (STIC)

Research Institute

- Accepted that fallopian tube is origin of many ovarian cancers
 - STIC is precursor lesion
- Refer to GYN ONC for management
- Management <u>can</u> include
 - Observation alone +/- Ca-125
 - Removal of ovaries if not performed
 - Genetics referral (~10% risk of BRCA)
 - ???Surgical staging
 - ???Chemotherapy

No Screening for OC

- Symptoms are vague "Disease that whispers..."
 - Bloating, pelvic or abdominal pain, difficulty eating or early satiety, urinary symptoms (new and frequent)
- Screening with US +/- Ca-125 is <u>NOT</u> supported for the general population
 - Possible increase in earlier detection that <u>does not</u> lead to improvement in mortality
- USPSTF assessment of multiple trials concluded that in average risk women aged 45 years or older OC related mortality was not improved by screening
 - Positive predictive value was <50%</p>
 - Harms of screening include false positives up to 44% which may cause stress and unnecessary surgery in up to 3.2% of women with complications in up to 15% of false positive surgeries
- UKCTOCS, PLCO screening trial, UC pilot trial

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Ovarian cancer population screening and mortality after long-term followup in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial

Prof Usha Menon, FRCOG 🙁 🖂 • Aleksandra Gentry-Maharaj, PhD • Matthew Burnell, PhD •

Naveena Singh, FRCPath Andy Ryan, PhD Chloe Karpinskyj, MSc et al. Show all authors

THE LANCET

The reduction in stage III or IV disease incidence in the MMS group was not sufficient to translate into lives saved, illustrating the importance of specifying cancer mortality as the primary outcome in screening trials. Given that screening did not significantly reduce ovarian and tubal cancer deaths, general population screening cannot be recommended.

202 562 were included in the analysis

- 50 625 (25.0%) in the MMS group
- 50 623 (25.0%) in the USS group
- 01 314 (50.0%) in the no screening group
- 2055 women were diagnosed with tubal or ovarian cancer: 522 (1.0%) of 50 625 in the MMS group, 517 (1.0%) of 50 623 in the USS group, and 1016 (1.0%) of 101 314 in the no screening group
- Compared with no screening, there was a 47.2% (95% CI 19.7 to 81.1) increase in stage I and 24.5% (-41.8 to -2.0) decrease in stage IV disease incidence in the MMS group
- Overall the incidence of stage I or II disease was 39.2% (95% CI 16.1 to 66.9) higher in the MMS group than in the no screening group, whereas the incidence of stage III or IV disease was 10.2% (-21.3 to 2.4) lower
- 1206 women died of the disease: 296 (0.6%) of 50 625 in the MMS group, 291 (0.6%) of 50 623 in the USS group, and 619 (0.6%) of 101 314 in the no screening group
- No significant reduction in ovarian and tubal cancer deaths was observed in the MMS (p=0.58) or USS (p=0.36) groups compared with the no screening group.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute The James

Screening for Ovarian Cancer

- Ca-125 is <u>NOT</u> a screening test
- ROCA may improve earlier detection
 - Serial Ca-125 monitoring algorithms
- For women with high risk features (i.e. BRCA)
 - Risk-reducing surgery is <u>preferred</u> over screening
 - NCCN guidelines Consider US and Ca-125 (both in younger women or those that do not pursue risk-reducing surgery

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

HE OHIO STATE UNIVERSITY

Other testing...

Beyond Ca-125 (ROMA, OVA1 etc)

 OVA1 (example) is 5 markers (including Ca-125) in preoperative serum to assess the likelihood of malignancy in patients with an adnexal mass for which surgery is planned – AIM was to allow community providers determine referral to GYN ONC

Performance of ROMA with Initial Cancer Risk Assessment (ICRA)³

	ICRA	ROMA	ICRA + ROMA
Sensitivity	73.3%	82.6%	88.4%
Specificity	84.3%	75.5%	67.2%
PPV	51.6%	43.6%	38.2%
NPV	93.2%	95.0%	96.2%

ROMA provides equal sensitivity to other commercially available risk stratification tools while enhancing the specificity for assessing the risk level of malignancy.^{3,4} This can aid in improved patient management within your practice.

ROMA is indicated for women who meet the following criteria: over age 18, ovarian adnexal mass present for which surgery is planned, and not yet referred to an oncologist. "ROMA should not be used without an independent clinical/radiological evaluation and is not intended to be a screening test or to determine whether a patient should proceed to surgery. Incorrect use of ROMA carries the risk of unnecessary testing, surgery, and/or delayed diagnosis."³

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Ovarian Cancer Work up

Imaging – US VS CT VS MRI

- CT often will give all the information needed
- Usually reserve PET/MRI for indeterminant lesions
 - What question am I asking?
- Chest imaging (+/-)
- Tumor markers (One size doesn't fit all)
 - Ca125, HE4, inhibin, AFP, HCG, LDH, CEA, Ca 19-9
 - Ca125:CEA ratio (25)

The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

OMPREHENSIVE CANCER CENTER

Referral to GYN ONC?

- Referral Guidelines from ACOG/SGO
 - Patients age, Ca-125 level, physical findings, imaging results, and family history (personal history)
- NCCN do not endorse guidelines for referral...
 - There case is that primary assessment and debulking by GYN Oncologist is associated with improved survival and that all patients with lesions suspected to be ovarian malignancies should be referred
- So who should be referred?
 - Ovarian Cancer (YES)
 - Adnexal masses (Not so simple)

	Pelvic Mass
	Age Group
Premen	nopausal (< 50 years old)
CA-12	25 > 200 U/mL
Ascite	es
	ence of abdominal or distant metastasis (by exam or imaging study ly history of breast or ovarian cancer (in a first-degree relative)
Postme	enopausal (> 50 years old)
CA-12	25 > 35 U/mL
Ascite	es
Nodu	lar or fixed pelvic masses
Evide	nce of abdominal or distant metastasis
Famil	ly history of breast or ovarian cancer (in a first-degree relative)

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

COMPREHENSIVE CANCER CENTER

Suspected Ovarian Cancer Patient

Questions: Patient able to tolerate "big" surgery

Disease amenable to removal

Case 1:

- Pelvic mass alone on imaging
- Surgery
- Frozen Section
- Diagnostic
- Therapeutic

Primary Surgery

Neo-Adjuvant Chemotherapy

Case 2:

Suspected Advanced Ovarian Cancer

- Suspicious imaging
- Surgery vs Biopsy

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Surgery – Staging

MIS VS OPEN

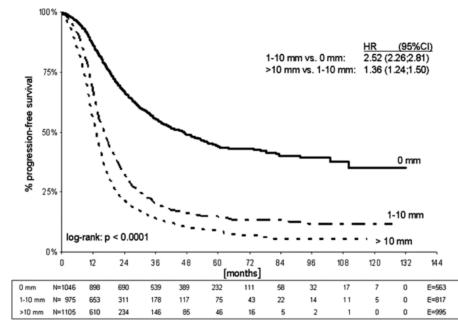
- Staging can be performed MIS
- Hysterectomy
- BSO
- Omentectomy
- Peritoneal Biopsies
- Pelvic and Aortic Lymphadenectomy
- Pelvic Washings
- ~30% upstaging with apparent early stage disease

Staging is prognostic, may impact treatment and complete staging has been associated with improved outcomes

Stage	Relative 5-Year Survival Rate
I	90%
IA	94%
IB	92%
IC	85%
Stage	Relative 5-Year Survival Rate
П	70%
IIA	78%
IIB	73%
IIC	57%

Stage	Relative 5-Year Survival Rate
III	39%
IIIA	59%
IIIB	52%
IIIC	39%

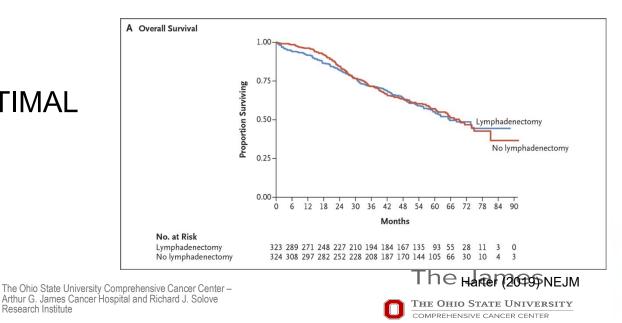
StageRelative 5-Year Survival RateIV17%


The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Surgery – Debulking

MIS VS OPEN

- Debulking usually best accomplished with laparotomy
 - Laparoscopic assessment for "debulkability"
- Reports of MIS for debulking in select cases

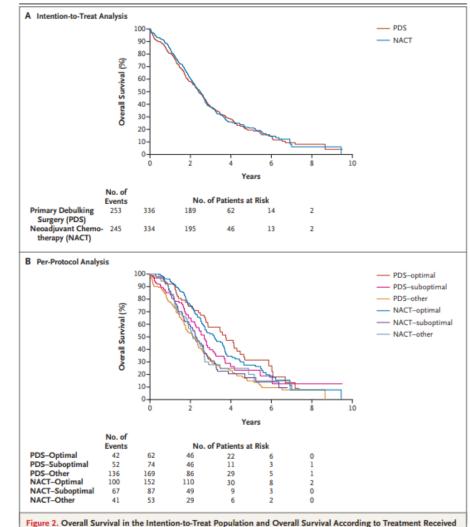


du Bois A et al (2009) Cancer

- Debulking **GOALs**
 - **OPTIMAL/COMPLETE** VS SUB-OPTIMAL

Research Institute

Lymphadenectomy +/-


Neo-Adjuvant Chemotherapy

NACT

- Patient Factors VS Disease Factors
- Advanced age, frailty, poor performance status, comorbidities
- Disease unlikely to be optimally cytoreduced

EORTC55971, SCORPION, JCOG0602

- Long Story Short…
 - NACT is on the rise
 - Oncologic outcomes *likely* not different
 - Surgical complexity is lower
 - Diagnostic imprecision, non-response and not getting to surgery remain problematic

and Status with Respect to Residual Tumor.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

THE OHIO STATE UNIV (2010) NEJM

Intraperitoneal (IP) Chemotherapy

2006

Clinical Advisory: NCI Issues Clinical Announcement for Preferred Method of Treatment for Advanced Ovarian Cancer

NCI Issues Clinical Announcement for Preferred Method of Treatment for Advanced Ovarian Cancer

The National Cancer Institute (NCI), part of the National Institutes of Health, today issued an announcement encouraging treatment with anticancer drugs via two methods, after surgery, for women with advanced ovarian cancer. The combined methods, which deliver drugs into a vein and directly into the abdomen, extend overall survival for women with advanced ovarian cancer by about a year.

The NEW ENGLAND JOURNAL of MEDICINE

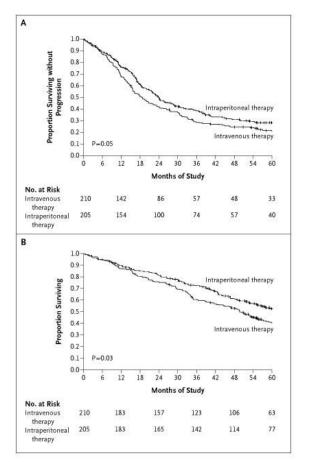
ORIGINAL ARTICLE

Intraperitoneal Cisplatin and Paclitaxel in Ovarian Cancer

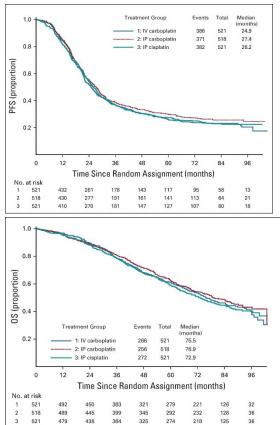
Deborah K. Armstrong, M.D., Brian Bundy, Ph.D., Lari Wenzel, Ph.D., Helen Q. Huang, M.S., Rebecca Baergen, M.D., Shashikant Lele, M.D., Larry J. Copeland, M.D., Joan L. Walker, M.D., and Robert A. Burger, M.D. for the Gynecologic Oncology Group*

Improved Overall Survival: The median duration of overall survival in the intravenous-therapy and intraperitoneal-therapy groups was 49.7 and 65.6 months, respectively (P=0.03 by the log-rank test). Quality of life was significantly worse in the intraperitoneal-therapy group before cycle 4 and three to six weeks after treatment but not one year after treatment.

Only 42% of IP patients completed the 6 cycles of treatment


The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

HE OHIO STATE UNIVERSITY


IP Chemo Has Fallen out of Favor

- Different Regimens
 - GOG172 (24 hour Taxol, higher dose cisplatin)
 - Bevacizumab in GOG252
- IP is more toxic
 - Catheter complications
 - Neuropathy, GI etc

GOG172 Armstrong (NEJM)

GOG252 Walker (JCO)

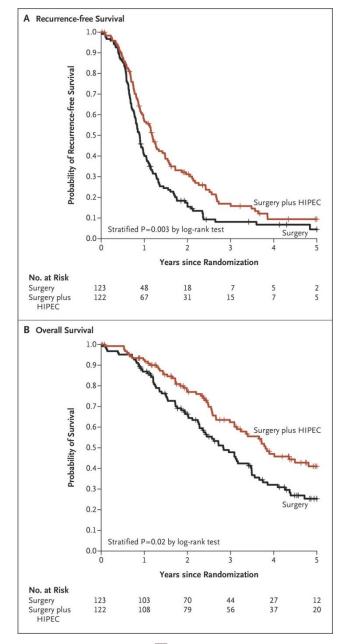
The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

HIPEC

The NEW ENGLAND

JOURNAL of MEDICINE

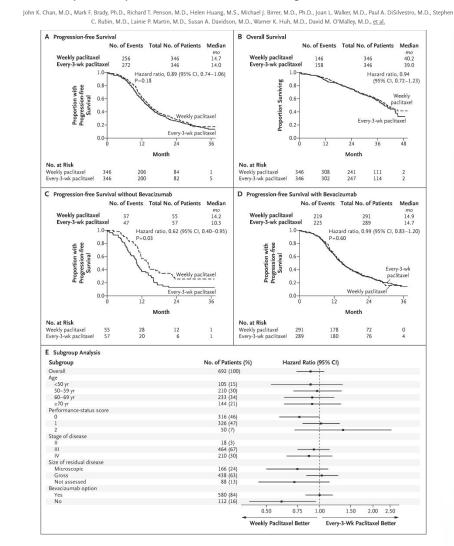
- HIPEC has been proposed at the time of IDS
- Still an area of research/debate


ORIGINAL ARTICLE

Hyperthermic Intraperitoneal Chemotherapy in Ovarian Cancer

Willemien J. van Driel, M.D., Ph.D., Simone N. Koole, M.D., Karolina Sikorska, Ph.D., Jules H. Schagen van Leeuwen, M.D., Ph.D., Henk W.R. Schreuder, M.D., Ph.D., Ralph H.M. Hermans, M.D., Ph.D., Ignace H.J.T. de Hingh, M.D., Ph.D., Jacobus van der Velden, M.D., Ph.D., Henriëtte J. Arts, M.D., Ph.D., Leon F.A.G. Massuger, M.D., Ph.D., Arend G.J. Aalbers, M.D., Victor J. Verwaal, M.D., Ph.D., et al.

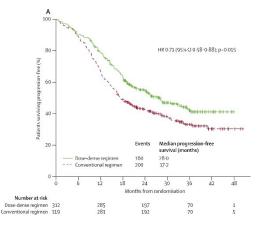
> The median overall survival was 33.9 months in the surgery group and 45.7 months in the surgery-plus-HIPEC group. The percentage of patients who had adverse events of grade 3 or 4 was similar in the two groups (25% in the surgery group and 27% in the surgery-plus-HIPEC group, P=0.76)



THE OHIO STATE UNIVERSITY COMPREHENSIVE CANCER CENTER

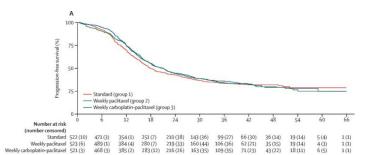
Dose Dense Chemotherapy

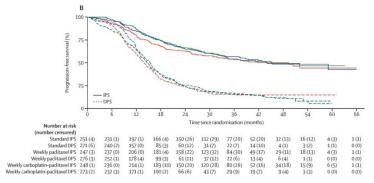
Weekly vs. Every-3-Week Paclitaxel and Carboplatin for Ovarian Cancer


The Ohio State University Comprehensive Cancer Center -Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

JGOG3016 THE LANCET ue 9698, 17-23 October 2009, Pages 1331-1338

Articles


Dose-dense paclitaxel once a week in combination with carboplatin every 3 weeks for advanced ovarian cancer: a phase 3, open-label, randomised controlled trial



THE LANCET

Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal carcinoma treatment (ICON8): primary progression free survival analysis results from a GCIG phase 3 randomised controlled trial

ARTICLES | VOLUME 394, ISSUE 10214, P2084-2095, DECEMBER 07, 2019

The James

Initial management conclusions:

Primary surgery – staging or debulking followed by chemotherapy

- Carboplatin/Paclitaxel every 3 weeks
- Can consider IP chemo
- Neo-adjuvant chemotherapy then IDS
 - Carboplatin/Paclitaxel every 3 weeks before and after
 - Can consider HIPEC at time of IDS
- ~6 cycles of chemotherapy
- If advanced stage (III/IV) and response... maintenance

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute The James

MPREHENSIVE CANCER CENT

Maintenance?

ÖÖÖOÖÖÖÖÖÖÖÖComen with advanced ovarian cancer
will see it return in their lifetime.2

WHY MAINTENANCE THERAPY with advanced ovarian cancer, recurrence is common

More than 22,000 women are diagnosed with ovarian cancer each year¹ — a disease that affects approximately 222,000 women in the US.³ Sadly, ovarian cancer signs and symptoms are hard to recognize, so women are often diagnosed at later stages with advanced disease.^{4,5} For these women, nearly 85% will see the cancer return in their lifetime² —known as recurrence — which produces additional anxiety, worry and uncertainty.⁶

Previously, observation or "watching and waiting," was the only option for women with advanced ovarian cancer between treatments. Fortunately, women have more choices to help delay a recurrence, whether or not they have the *BRCA* mutation.⁷

Maintenance therapy may make a difference

After chemotherapy, some doctors may choose to monitor you closely with tests and scans or prescribe maintenance therapy.

Maintenance therapy may help keep your advanced ovarian cancer from growing or returning after you have had a partial or complete response to a previous platinum-based chemotherapy.

Without maintenance therapy, advanced ovarian cancer may return in

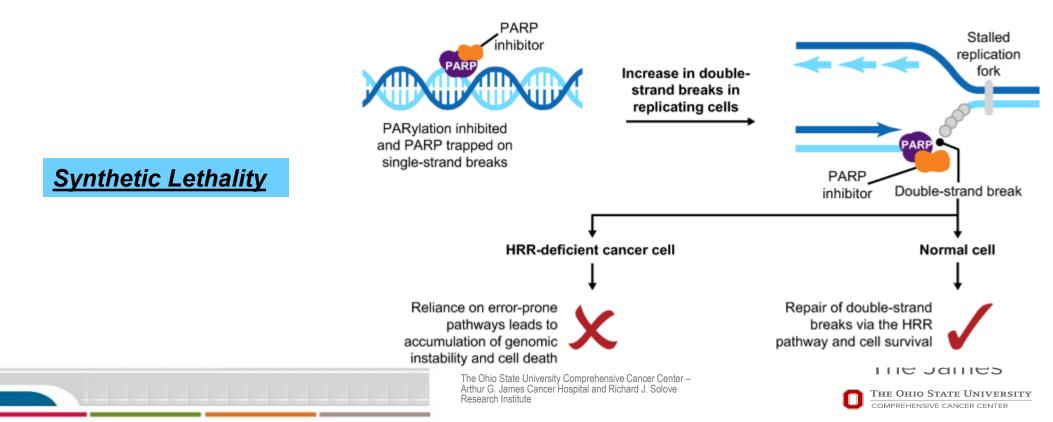
After surgery and their first line of chemotherapy.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Ovarian Cancer Molecular Testing

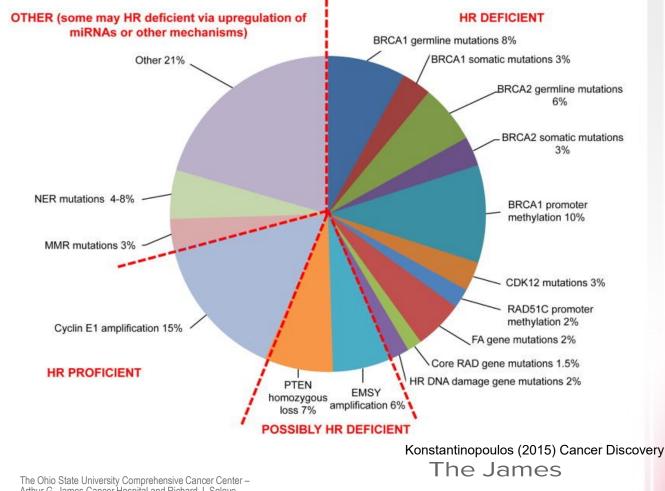
Germline testing (ALL epithelial ovarian cancers)

- Multi-gene panel testing
- BRCA 1/2
- Other homologous recombination genes (RAD51C/D)
- Somatic (tumor) testing
 - Many include testing for homologous recombination deficiency (HRD)
 - Does <u>NOT</u> replace GERMLINE testing
- BRCA Mutations (HR Gene Mutations) and HRD status are important biomarkers for ovarian cancer



The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute The James

BRCA and HRD in Ovarian Cancer

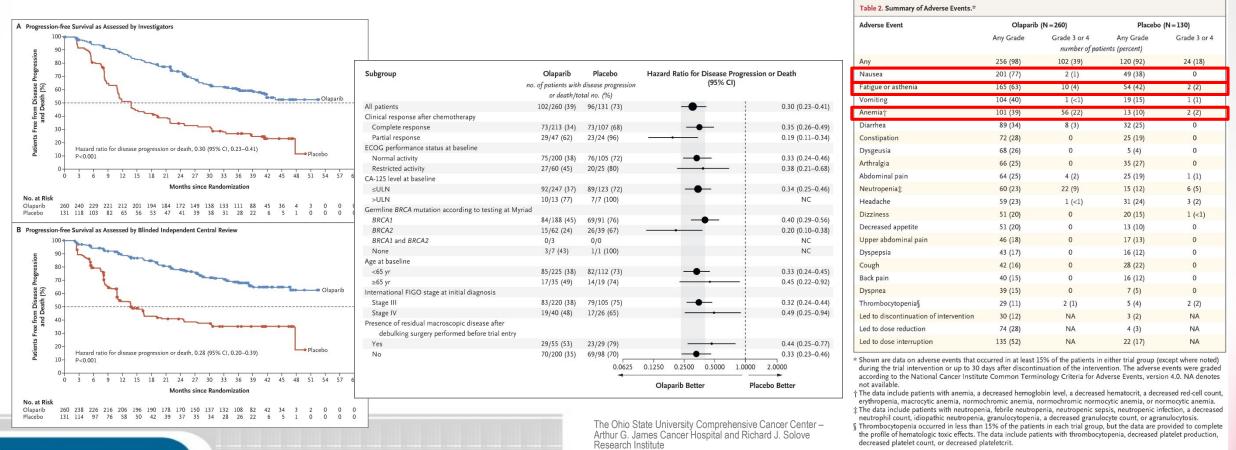

- BRCA and HRD have become critically important biomarkers in management of OC
- BRCA and HRD predict response to PARP inhibitors

Ovarian Cancer Molecular Testing

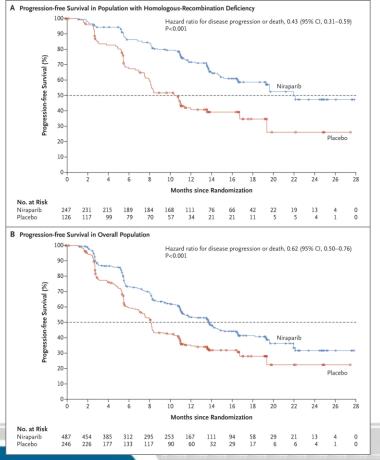
- ~15% BRCA germline
- ~50% somatic HRD
- ~3% MMR mutations
 Immunotherapy

Still a lot to figure out

THE OHIO STATE UNIVERSITY


COMPREHENSIVE CANCER CENTER

Arthur G. James Cancer Hospital and Richard J. Solove Research Institute


Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer

Kathleen Moore, M.D., Nicoletta Colombo, M.D., Giovanni Scambia, M.D., Byoung-Gie Kim, M.D., Ph.D., Ana Oaknin, M.D., Ph.D., Michael Friedlander, M.D., Alla Lisyanskaya, M.D., Anne Floquet, M.D., Alexandra Leary, M.D., Gabe S. Sonke, M.D., Ph.D., Charlie Gourley, M.D., Susana Banerjee, M.D., Ph.D., <u>et al.</u>

Niraparib in Patients with Newly Diagnosed Advanced Ovarian Cancer

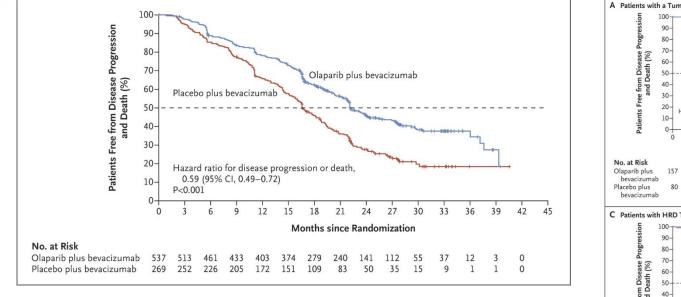
Antonio González-Martín, M.D., Ph.D., Bhavana Pothuri, M.D., Ignace Vergote, M.D., Ph.D., René DePont Christensen, Ph.D., Whitney Graybill, M.D., Mansoor R. Mirza, M.D., Colleen McCormick, M.D., M.P.H., Domenica Lorusso, M.D., Ph.D., Paul Hoskins, M.D., Gilles Freyer, M.D., Klaus Baumann, M.D., Kris Jardon, M.D., et al., for the PRIMA/ENGOT-OV26/GOG-3012 Investigators*

2018

The NEW ENGLAND

JOURNAL of MEDICINE

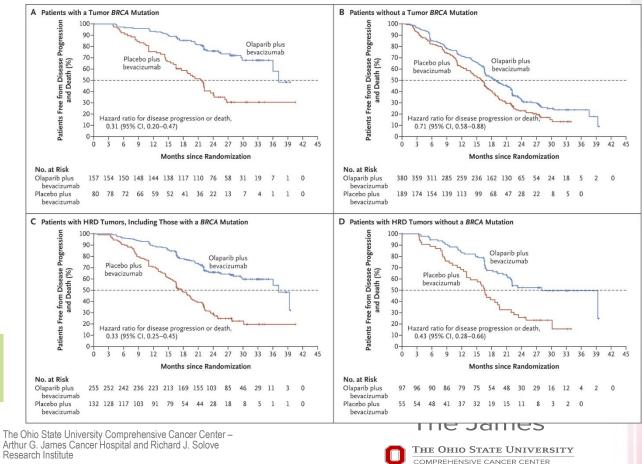
Subgroup	Niraparib	Placebo	Hazard Ratio for Disease Prog	ression or Death (95% CI)
	no. of patients with or death/to			
All patients	232/487 (47.6)	155/246 (63.0)		0.62 (0.50-0.76)
Age				
<65 yr	136/297 (45.8)	86/147 (58.5)		0.61 (0.47-0.81)
≥65 yr	96/190 (50.5)	69/99 (69.7)	-	0.53 (0.38-0.74)
ECOG score				
0	146/337 (43.3)	107/174 (61.5)	_ _	0.60 (0.46-0.77)
1	86/150 (57.3)	48/72 (66.7)		0.69 (0.48-1.00)
Stage of disease at initial diagnosis				
	143/318 (45.0)	103/158 (65.2)	_ _	0.54 (0.42-0.70)
IV	89/169 (52.7)	52/88 (59.1)		0.79 (0.55-1.12)
Neoadjuvant chemotherapy				
Yes	151/322 (46.9)	107/167 (64.1)		0.59 (0.46-0.76)
No	81/165 (49.1)	48/79 (60.8)	i	0.66 (0.46-0.94
Best response to platinum therapy				
Complete response	146/337 (43.3)	100/172 (58.1)		0.60 (0.46-0.77)
Partial response	86/150 (57.3)	55/74 (74.3)		0.60 (0.43-0.85)
Geographic region				
North America	104/218 (47.7)	82/115 (71.3)	_	0.50 (0.37-0.68)
All other regions	128/260 (47 6)	72/121 (55 7)	-	0.72 (0.54 0.06
Homologous-recombination status				
BRCA mutation	49/152 (32.2)	40/71 (56.3)	I	0.40 (0.27-0.62)
No BRCA mutation, homologous- recombination deficiency	32/95 (33.7)	33/55 (60.0)		0.50 (0.31-0.83
Homologous-recombination proficiency	111/169 (65.7)	56/80 (70.0)		0.68 (0.49-0.94)
Not determined	40/71 (56.3)	26/40 (65.0)	•	- 0.85 (0.51-1.43)
		0.25	o 0.50 1.00	2.00
			Niraparib Better Placeb	o Better


The Ohio State University Comprehensive Cancer Center -Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

Adverse Events	Niraparib (N=484)	Placebo (N=244)
Overall population	no. of pat	ients (%)
Adverse event		
Any	478 (98.8)	224 (91.8)
Grade ≥3	341 (70.5)	46 (18.9)
Treatment-related adverse event*	341 (70.5)	40 (18.9)
Any	466 (96.3)	168 (68.9)
Grade ≥3	316 (65.3)	16 (6.6)
Serious adverse event	310 (05.5)	10 (0.0)
	156 (22.2)	22 (12 1)
Any	156 (32.2)	32 (13.1)
Treatment-related	118 (24.4)	6 (2.5)
Leading to treatment discontinuation	58 (12.0)	6 (2.5)
Leading to dose reduction	343 (70.9)	20 (8.2)
Leading to dose interruption	385 (79.5)	44 (18.0)
Leading to death	2 (0.4)	1 (0.4)
Auronalia		
Anemia		
Any grade	307 (63.4)	43 (17.6)
Grade ≥3	150 (31.0)	4 (1.6)
Nausea		
Any grade	278 (57.4)	67 (27.5)
Grade ≥3	6 (1.2)	2 (0.8)
Thrombocytopenia		
Any grade	222 (45.9)	9 (3.7)
Grade ≥3	139 (28.7)	1 (0.4)
Constipation		
Any grade	189 (39.0)	46 (18.9)
Grade ≥3	1 (0.2)	0
Fatigue		
Any grade	168 (34.7)	72 (29.5)
Grade ≥3	9 (1.9)	1 (0.4)
Platelet count decreased		
Any grade	133 (27.5)	3 (1.2)
Grade ≥3	63 (13.0)	0
Neutropenia		
Any grade	128 (26.4)	16 (6.6)
Grade ≥3	62 (12.8)	3 (1.2)
Headache		
Any grade	126 (26.0)	36 (14.8)
Grade ≥3	2 (0.4)	0
Insomnia		
Any grade	119 (24.6)	35 (14.3)
Grade ≥3	4 (0.8)	1 (0.4)
Vomiting		
Any grade	108 (22.3)	29 (11.9)
Grade ≥3	4 (0.8)	2 (0.8)
Abdominal pain	. ,	. ,
Any grade	106 (21.9)	75 (30.7)
Grade ≥3	7 (1.4)	1 (0.4)

Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer

Isabelle Ray-Coquard, M.D., Ph.D., Patricia Pautier, M.D., Sandro Pignata, M.D., Ph.D., David Pérol, M.D., Antonio González-Martín, M.D., Ph.D., Regina Berger, Ph.D., Keiichi Fujiwara, M.D., Ph.D., Ignace Vergote, M.D., Ph.D., Nicoletta Colombo, M.D., Johanna Mäenpää, M.D., Ph.D., Frédéric Selle, M.D., Jalid Sehouli, M.D., <u>et al.</u>, for the PAOLA-1 Investigators^{*}



Non-HRD/Unknown HR =0.92 (95% CI 0.72-1.17) This combination only approved for HRD+

The NEW ENGLAND

JOURNAL of MEDICINE

2019

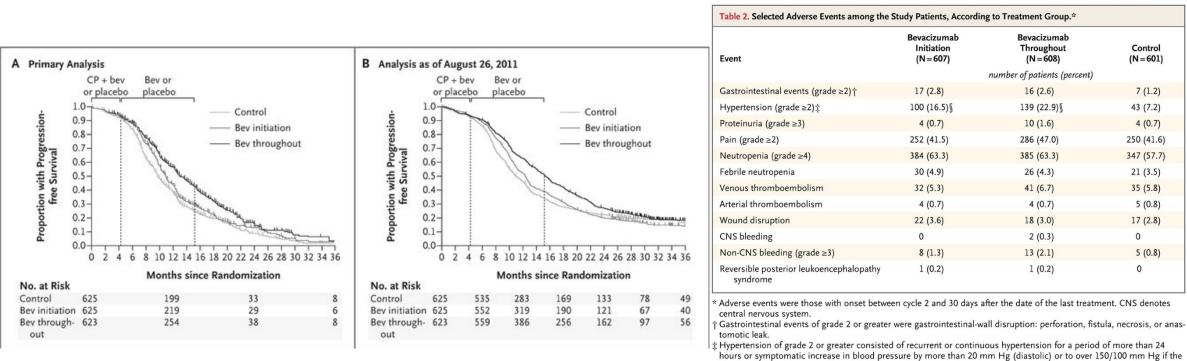
PARP Inhibitor in Upfront Setting

- If response to platinum based chemotherapy
- PARP as maintenance
 - Veliparib was given concurrent with chemo (VELIA)
- Opportunities for treatment in recurrent setting

PARP Inhibitors in the Management of Ovarian Cancer RECOMMENDATIONS FOR PARP INHIBITOR USE SUMMARY

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

The James



The NEW ENGLAND JOURNAL of MEDICINE

2011

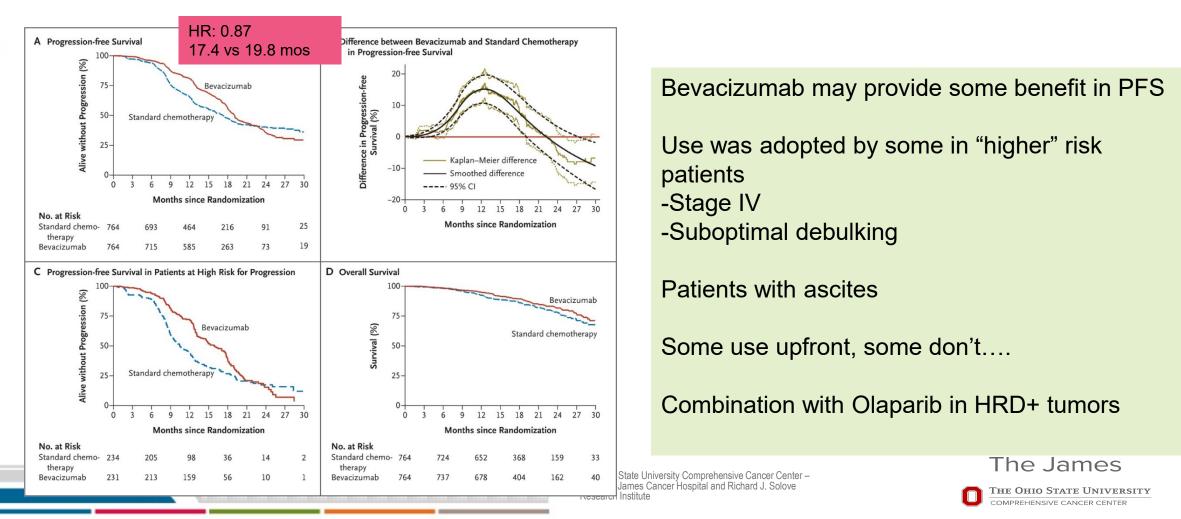
Incorporation of Bevacizumab in the Primary Treatment of Ovarian Cancer

Robert A. Burger, M.D., Mark F. Brady, Ph.D., Michael A. Bookman, M.D., Gini F. Fleming, M.D., Bradley J. Monk, M.D., Helen Huang, M.S., Robert S. Mannel, M.D., Howard D. Homesley, M.D., Jeffrey Fowler, M.D., Benjamin E. Greer, M.D., Matthew Boente, M.D., Michael J. Birrer, M.D., Ph.D., et al., for the Gynecologic Oncology Group*

blood pressure was previously within the normal range.

 ${\ensuremath{\,]}}$ P<0.05 for the comparison with the control group.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute


COMPREHENSIVE CANCER CENTER

THE OHIO STATE UNIVERSITY

A Phase 3 Trial of Bevacizumab in Ovarian Cancer

Timothy J. Perren, M.D., Ann Marie Swart, M.D., Jacobus Pfisterer, M.D., Jonathan A. Ledermann, M.D., Eric Pujade-Lauraine, M.D., Gunnar Kristensen, M.D., Mark S. Carey, M.D., Philip Beale, M.D., Andrés Cervantes, M.D., Christian Kurzeder, M.D., Andreas du Bois, M.D., Jalid Sehouli, M.D., et al., for the ICON7 Investigators*

Recurrent Ovarian Cancer

- Recurrence management dictated on platinum-free interval
- > 6 months since last platinum treatment = PLATINUM SENSITIVE
- <u><6</u> months since last platinum treatment = PLATINUM RESISTANT
- Progression on platinum = PLATINUM REFRACTORY
- No longer "curable" but still treatable
- Regimens often dictated on prior toxicities
- Clinical trials

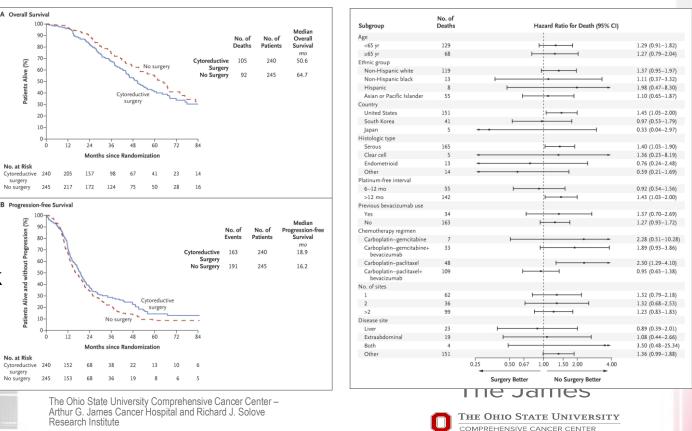
The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

MPREHENSIVE CANCER CENT


Does Surgery Play A Role in Recurrence?

The NEW ENGLAND JOURNAL of MEDICINE 2019

ORIGINAL ARTICLE


Secondary Surgical Cytoreduction for Recurrent Ovarian Cancer

Robert L. Coleman, M.D., Nick M. Spirtos, M.D., Danielle Enserro, Ph.D., Thomas J. Herzog, M.D., Paul Sabbatini, M.D., Deborah K. Armstrong, M.D., Jae-Weon Kim, M.D., Sang-Yoon Park, M.D., Byoung-Gie Kim, M.D., Joo-Hyun Nam, M.D., Keiichi Fujiwara, M.D., Joan L. Walker, M.D., <u>et al.</u>

Platinum Sensitive Assessed bevacizumab Assessed secondary surgery Chemotherapy to follow

"Lenient" criteria – Surgeon thinks they can debulk

Does Surgery Play A Role in Recurrence?

DESKTOP III Presented at ASCO 2020

Positive AGO-score (PS ECOG 0, ascites ≤500 ml, and complete resection at initial surgery)

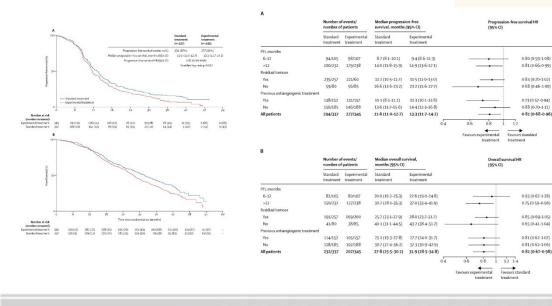
Verdict? Secondary surgery may provide benefit for SELECT cases

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

COMPREHENSIVE CANCER CENTER

Fhe Ohio State University

Platinum Sensitive Recurrent Ovarian Cancer


- Re-Challenge with Platinum-containing regimen
 - Doublet with Pegylated Liposomal Doxorubicin (PLD), Gemcitabine, Paclitaxel

RTICLES | VOLUME 21, ISSUE 5, P699-709, MAY 01, 2020

Bevacizumab and platinum-based combinations for recurrent ovarian cancer: a randomised, open-label, phase 3 trial

PLD>Gem

JOURNAL OF CLINICAL ONCOLOGY

VOLUME 28 · NUMBER 20 · JULY 10 2010

ORIGINAL REPORT

Pegylated Liposomal Doxorubicin and Carboplatin Compared With Paclitaxel and Carboplatin for Patients With Platinum-Sensitive Ovarian Cancer in Late Relapse

Eric Pujade-Lauraine, Uwe Wagner, Elisabeth Aavall-Lundqvist, Val Gebski, Mark Heywood, Paul A. Vasey, Birgit Volgger, Ignace Vergote, Sandro Pignata, Annamaria Ferrero, Jalid Sehouli, Alain Lortholary, Gunnar Kristensen, Christian Jackisch, Florence Joly, Chris Brown, Nathalie Le Fur, and Andreas du Bois

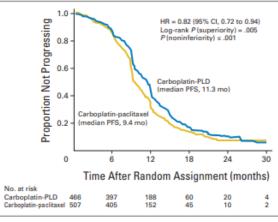


Fig 2. Progression-free survival (PFS). HR, hazard ratio; PLD, pegylated liposomal doxorubicin.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

PLD>Taxol *** <neuropathy

Platinum Sensitive – Maintenance (PARP)

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Niraparib Maintenance Therapy in Platinum-Sensitive, Recurrent Ovarian Cancer

Mansoor R. Mirza, M.D., Bradley J. Monk, M.D., Jørn Herrstedt, M.D., D.M.Sc., Amit M. Oza, M.D., Sven Mahner, M.D., Andrés Redondo, M.D., Ph.D., Michel Fabbro, M.D., Jonathan A. Ledermann, M.D., Domenica Lorusso, M.D., Ignace Vergote, M.D., Ph.D., Noa E. Ben-Baruch, M.D., Christian Marth, M.D., et al., for the ENGOT-OV16/NOVA Investigators^{*}

THE LANCET

LUME 18, ISSUE 9, P1274-1284, SEPTEMBER 01, 2017

Olaparib tablets as maintenance therapy in patients with platinumsensitive, relapsed ovarian cancer and a *BRCA1/2* mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial

Prof Eric Pujade-Lauraine, MD _ A ⊡ • Prof Jonathan A Ledermann, MD • Frédéric Selle, MD • Prof Val Gebski, FRANZCR • Richard T Penson, MD • Prof Amit M Oza, MD • et al. Show all authors • Show footnotes

THE LANCET

ARTICLES | VOLUME 390, ISSUE 10106, P1949-1961, OCTOBER 28, 2017

Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial

Prof Robert L Coleman, MD A ^{*} ⊠ • Prof Amit M Oza, MD • Domenica Lorusso, MD • Carol Aghajanian, MD • Ana Oaknin, MD • Andrew Dean, MD • et al. Show all authors • Show footnotes

	STUDY 19 ¹ ITT	SOLO-2 ² g <i>BRCA</i> m	NOVA ³ g <i>BRCA</i> m			ARIEL3 ⁴ ITT
Agent	Olaparib	Olaparib	Niraparib	Niraparib	Rucaparib	Rucaparib
Difference in mPFS, mo	8.4 vs 4.8	19.1 vs 5.5	21.0 vs 5.5	9.3 vs 3.9	16.6 vs 5.4	10.8 vs 5.4
PFS HR (investigator assessed)	0.35 (95% Cl, 0.25-0.49; <i>P</i> < .001)	0.30 (95% CI, 0.22-0.41; P < .0001)	0.27 (95% Cl, 0.18-0.40; P < .001)	0.53 (95% Cl, 0.41-0.68; P < .001)	0.23 (95% Cl, 0.16- 0.34; <i>P</i> < .0001)	0.36 (95% CI, 0.30-0.45; <i>P</i> < .0001)
PFS HR (BICR)	0.39 (95% Cl, 0.27-0.55; <i>P</i> < .001)	0.25 (95% Cl, 0.18-0.35; P < .0001)	0.27 (95% CI, 0.17-0.41; P < .001)	0.45 (95% CI, 0.34-0.61; P < .001)	0.20 (95% Cl, 0.13- 0.32; P < .0001)	0.35 (95% CI, 0.28-0.45; <i>P</i> < .0001)

Olaparib, Rucaparib, Niraparib all have approval as maintenance in platinum sensitive recurrence (if response to platinum) as maintenance

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

The James

Platinum Sensitive – Maintenance (Bev)

Venous thromboembolic event (grade ≥ 3)

2.6 10 4.0

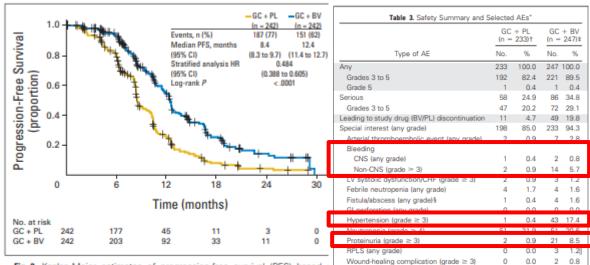
VOLUME 30 · NUMBER 17 · JUNE 10 2012

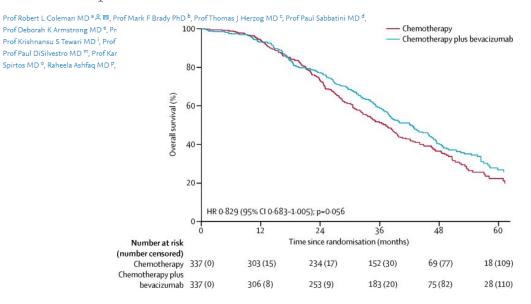
JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

OCEANS: A Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Chemotherapy With or Without Bevacizumab in Patients With Platinum-Sensitive Recurrent Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancer

Carol Aghajanian, Stephanie V. Blank, Barbara A. Goff, Patricia L. Judson, Michael G. Teneriello, Amreen Husain, Mika A. Sovak, Jing Yi, and Lawrence R. Nycum




Fig 2. Kaplan-Meier estimates of progression-free survival (PFS) based (investigator assessment, censoring for non-protocol-specified therapy (random.), assigned patients). BV, bevacizumab; GC, gemcitabine plus carboplatin; HR, hazard ratio; PL, placebo.

Articles

Bevacizumab and paclitaxel–carboplatin chemotherapy and secondary cytoreduction in recurrent, platinum-sensitive ovarian cancer (NRG Oncology/Gynecologic Oncology Group study GOG-0213): a multicentre, open-label, randomised, phase 3 trial

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

The James

Platinum Resistant

VOLUME 32 · NUMBER 13 · MAY 1 2014

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Bevacizumab Combined With Chemotherapy for Platinum-Resistant Recurrent Ovarian Cancer: The AURELIA Open-Label Randomized Phase III Trial

Eric Pujade-Lauraine, Felix Hilpert, Béatrice Weber, Alexander Reuss, Andres Poveda, Gunnar Kristensen, Roberto Sorio, Ignace Vergote, Petronella Witteveen, Aristotelis Bamias, Deolinda Pereira, Pauline Wimberger, Ana Oaknin, Mansoor Raza Mirza, Philippe Follana, David Bollag, and Isabelle Ray-Coquard

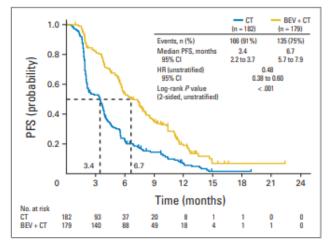
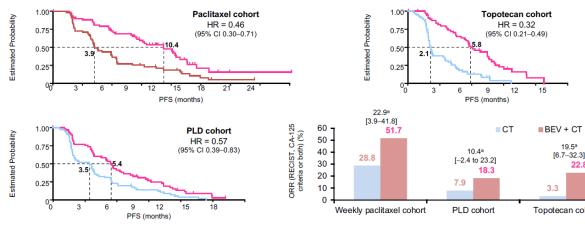
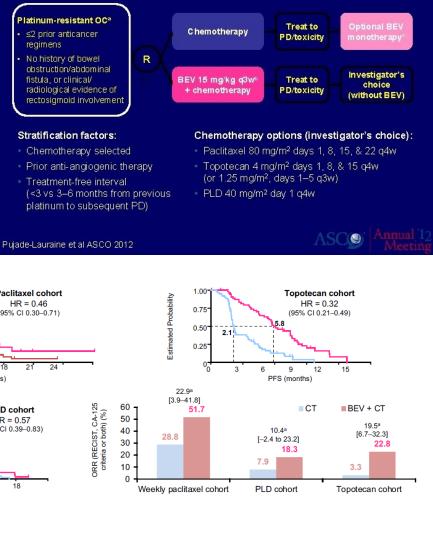




Fig 2. Progression-free survival (PFS). BEV, bevacizumab; CT, chemotherapy; HR, hazard ratio

The Ohio State University Comprehensive Cancer Center -Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

AURELIA trial design

Poveda AM, et al; J Clin Oncol. 2015

The James

COMPREHENSIVE CANCER CENTER

THE OHIO STATE UNIVERSITY

What About Immunotherapy?

THE LANCET Oncology

Chemotherapy with or without avelumab followed by avelumab maintenance versus chemotherapy alone in patients with previously untreated epithelial ovarian cancer (JAVELIN Ovarian 100): an open-label, randomised, phase 3 trial

Prof Bradley J Monk, MD 🕺 † 🖂 + Nicoletta Colombo, MD + Prof Amit M Oza, MD + Prof Keiichi Fujiwara, MD + Prof Michael J Birrer, MD + Prof Leslie Randall, MD + et al. Show all authors + Show footnotes

ARTICLES | VOLUME 22, ISSUE 9, P1275-1289, SEPTEMBER 01, 2021

Although no new safety signals were observed, results do not support the use of avelumab in the frontline treatment setting. Alternative treatment regimens are needed to improve outcomes in patients with advanced epithelial ovarian cancer.

Avelumab alone or in combination with chemotherapy versus chemotherapy alone in platinum-resistant or platinum-refractory ovarian cancer (JAVELIN Ovarian 200): an open-label, three-arm, randomised, phase 3 study

Prof Eric Pujade-Lauraine, MD 🔗 🖾 + Prof Keiichi Fujiwara, MD + Prof Jonathan A Ledermann, MD + Prof Amit M Oza, MD + Rebecca Kristeleit, MD + Prof Isabelle-Laure Ray-Coquard, MD + et al. Show all authors

Neither avelumab plus PLD nor avelumab alone significantly improved progression-free survival or overall survival versus PLD. These results provide insights for patient selection in future studies of immune checkpoint inhibitors in platinum-resistant or platinum-refractory ovarian cancer.

> ---- Avelumab plus PLD ----- PLD ----- Avelumab

100

90

80

70

60

50

40

30 20

3 6 9 12 15 18 21 24 27 30 33

617 597 549 473 348 218 128

650 627 604 556

%

PFS

Α

No at risk

Placebo plus CP plus bevacizumab

Atezolizumab plus CP plus bevacizumab 651

JOURNAL OF CLINICAL ONCOLOGY

June 10, 2021

Placebo Plus CP Plus

Bevacizumat

341 (52.5

18.4 (17.2 to 19.8)

Atezolizumab Plus CP Plus Bevacizumab

(n = 651)

323 (49.6)

0.92 (0.79 to 1.07)

29.1 (23.9 to 34.3) 35.1 (30.0 to 40.3

19.5 (18.1 to 20.8

ORIGINAL REPORT

Atezolizumab, Bevacizumab, and Chemotherapy for Newly Diagnosed Stage III or IV Ovarian Cancer: Placebo-Controlled Randomized Phase III Trial (IMagyn050/GOG 3015/ENGOT-OV39)

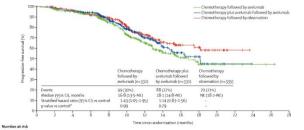
Kathleen N. Moore ^(b), MD^{1,2} ^[C]; <u>Michael Bookman</u> ^(b), MD³; <u>Jalid Sehouli</u>, MD⁴; <u>Austin Miller</u>, PhD⁵; <u>Charles</u> Anderson, MD⁶; <u>Giovanni Scambia</u> ^(b), MD⁷; ...

Current evidence does not support the use of immune checkpoint inhibitors in newly diagnosed OC. Insight from this trial should inform further evaluation of immunotherapy in OC.

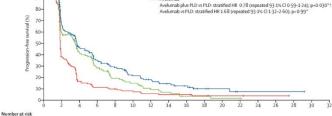
Events, n (%)

474 344 216 131 42

Median PES, months (95% CI)

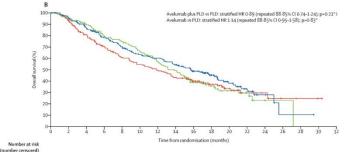

Stratified log-rank P value

year event-free rate (95% CI)


19.4 19.6

Time (months)

Stratified HR (95% CI)



(mumber censored) Commethempoliciewel by avelumb 33(10) 30(12) 280(16) 252(16) 136(104) 143(122) 100(551) 58(162) 36(200) 18(125) 10(223) 4(229) 2(231) 1(232) Chemothempoliciewel by avelumb 33(10) 30(15) 39(211) 27(142) 1114(4) 157(143) 101(160) 54(159) 33(214) 17(228) 4(229) 1442) - - -Chemothempoliciewel by avelumb 33(10) 30(15) 39(211) 27(142) 1114(4) 157(143) 102(160) 54(159) 33(214) 17(228) 4(229) 1442) - - - -Chemothempoliciewel by avelumb 33(10) 30(15) 39(12) 39(123) 30(153) 30(153) 30(153) 30(155) 30(156) 21(142) 21(152) 30(152) 30(153) 30(15

(number censored)

Avelumab plus PLD 188(0) 1112(24) 68(33) 49(36) 38(38) 26(41) 20(43) 15(44) 11(46) 6(49) 4(53) 1(53) 1(53) 1(53) 1(53) -PLD 190(0) 86(42) 53(2) 31(58) 18(62) 14(62) 8(63) 6(63) 2(64) 2(64) 1(46) 1(64) 1(64) - - - - - -Avelumab 188(0) 6(21) 32(73) 15(28) 12(29) 10(29) 7(29) 6(29) 6(29) 4(20) 2(32) 2(32) 1(33) 1(33) - -

nament construction 188 (0) 174 (5) 152 (11) 130 (19) 115 (21) 100 (25) 94 (26) 84 (27) 64 (29) 45 (54) 27 (66) 15 (75) 5 (83) 1 (85) 1 (85) - − PLD 199 (0) 162 (20) 144 (26) 123 (24) 114 (35) 99 (36) 84 (36) 73 (38) 464 (48) 30 (63) 187 (27) 117 (48) - − Avelenabe 188 (0) 166 (0) 137 (17) 114 (22) 97 (24) 74 (47) 74 (48) 65 (25) 55 (33) 35 (50) 24 (60) 97 (17) 67 (43) 37 (6) 27 (77) 17 (78)

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute

The James

Antibody Drug Conjugates

		ADC	Target antigen/ antibody	Cytotoxic payload and mechanism of action	
Site-specific conjugation 1. Engineered cysteine 2. Enzymatic conjugations 3. Incorporation of UAAs	Non-specific conjugation through lysine or cysteine residues	Mirvetuximab soravtansine (ImmunoGen, Inc)	Folate receptor a Humanized IgG1 (M9346A)	Soravtansine (Maytansinoid DM4) Microtubule inhibitor	Sulfo-PDB
Antibo	dy				
Noncleavable Lysosomal degradation to release drugs	Target microtubules 1. Auristatin derivatives 2. Maytansinoids 3. Tubulysins	STRO-002 (Sutro Biopharma, Inc.)	Folate receptor o Human anti-FRo IgG1 antibody (SP8166)	Proprietary 3- aminophenyl hemiasterlin agent: SC209 Proprietary tubulin- targeting payload	Proprietary de
Linker	Drugs	MORAb-202 (Eisai Inc.)	Folate receptor o Humanized anti- human FRo farletuzumab	Eribulin mesylate Microtubule inhibitor	Cathepsin B-d
Cleavable 1. Acid sensitive 2. Lysosome protease	Target DNA 1. Calicheamicins analogs	XMT-1536 (Mersana Therapeutics)	NaPi2b Humanized monoclonal antibody (SLC34A2)	Proprietary auristatin derivative (auristatin F-HPA) Microtubule inhibitor	Proprietary hy scaffold
3. Redox sensitive	2. Duocarmycin analogs	Lifastuzumab vedotin (LIFA/DNIB0600A) (Genentech, Inc.)	NaPi2b Humanized monoclonal antibody (SLC34A2)	MMAE Microtubule inhibitor	Cleavable mal citrullinyl-p- aminobenzylo cit-PABC)
Zhao et al. Recent advances of antibody drug conjugates for clinical applications Acta Pharmaceutica Sinica B		Tisotumab vedotin (HuMax-TF-ADC; TF011-MMAE) (Seattle Genetics, Inc.)	Tissue factor Fully human monoclonal antibody	MMAE Microtubule inhibitor	Protease cleav linker
Volume 10, Issue 9, September 2020, Pages 1589-1600		Anetumab ravtansine (BAY 94–9343) (Bayer)	Mesothelin Fully human IgG1 (MF-T)	Ravtansine/ DM4 Microtubule inhibitor	Sulfo-PDB
	DATION [®] GOG PARTNERS standard of cure	DMOT4039A (RG7600) (Genentech, Inc.)	Mesothelin Humanized IgG1 antibody (h7D9.v3)	MMAE Microtubule inhibitor	Protease cleav linker
		BMS-986148 (Bristol-Myers Squibb)	Mesothelin Fully human IgG1 monoclonal antibody	Duocarmycin-related DNA alkylation	Protease cleav linker
	y Drug Conjugates w Class of Agents	Sofituzumab vedotin (DMUC5754A) (Genentech, Inc.)	MUC16 Humanized IgG1 monoclonal antibody	MMAE Microtubule inhibitor	Protease cleav linker
		Anti-MUC16 TDC (DMUC4064A) (Genentech, Inc.)	MUC16 Humanized anti- MUC16 IgG1	MMAE Microtubule inhibitor	Cysteine-engi
	ating Recurrent arian Cancer	The Ohio State Arthur G. Jame Research Instit	s Cancer Hosp	mprehensive Ca bital and Richard	ncer Cent J. Solove

ADC	Target antigen/ antibody	Cytotoxic payload and mechanism of action	Linker	DAR	Clinical outcomes	Phase of development	Most commonly reported adverse events
Mirvetuximab soravtansine (ImmunoGen, Inc)	Folate receptor a Humanized IgG1 (M9346A)	Soravtansine (Maytansinoid DM4) Microtubule inhibitor	Sulfo-PDB	3-4	ORR 24-46% ^{bit} Median PF5 4.8- 6.7 montHer Combination therapy: Carboplatin: ORR 71% ^a (80% ^b); PF5 15 months Bevacizumab: ORR 41% ^b ; PF5 7.1 months Carboplatin + Bevacizumab: ORR 80% ^{bit}	Phase III; Phase Ib/II for combination therapy ongoing (NCT02606305)	Diarrhea (34-64%), fatigue (30-32%), nausea (25-54%) neuropathy (26%), blurred vision (25-43%), keratopathy (26%), increased XFI (24%), vontiling (22%) Combination therapy: Auseas (67%), diarrhea (61%), thrombocytopenia (61%) blurred vision (61%)
STRO-002 (Sutro Biopharma, Inc.)	Folate receptor o Human anti-FRo IgG1 antibody (SP8166)	Proprietary 3- aminophenyl hemiasterlin agent: SC209 Proprietary tubulin- targeting payload	Proprietary deavable linker: SC239	4	ORR 7.7% (preliminary results; phase I dose escalation, ongoing)	Phase I dose escalation/ expansion ongoing (NCT03748186)	Nausea, vomiting, abdominal pain, fatigue, and insomnia (occurring in 220% of patients)
MORAb-202 (Eisai Inc.)	Folate receptor o Humanized anti- human FRo farletuzumab	Eribulin mesylate Microtubule inhibitor	Cathepsin B-cleavable linker	4	ORR 37.5% in entire cohort (3 ovarian cancer patients)	Phase I ongoing (NCT03386942)	Leukopenia (50%), neutropenia (50%)
XMT-1536 (Mersana Therapeutics)	NaPi2b Humanized monoclonal antibody (SLC34A2)	Proprietary auristatin derivative (auristatin F-HPA) Microtubule inhibitor	Proprietary hydrophilic polymer scaffold	10- 12	33% ^{b,c} (also included NSCLC)	Phase I dose escalation/expansion ongoing (NCT03319628)	Nausea, fatigue, headache, vomiting, pyrexia, decreased appetite, diarrhea, anemia, thrombocytopenia, and increased aspartate aminotransferase, alarine aminotransferase, and alkaline phosphatase (occurring in 210% of patients)
Lifastuzumab vedotin (LIFA/DNIB0600A) (Genentech, Inc.)	NaPi2b Humanized monoclonal antibody (SLC34A2)	MMAE Microtubule inhibitor	Cleavable maleimidocaproyl-valyl- citrullinyl-p- aminobenzyloxycarbonyl (mc-val- cit-PABC)	3-4	ORR 36% ^{b,c}	Randomized phase II completed; further development discontinued	Fatigue (44%), nausea (46%), abdominal pain (46%), decreased appetite (37%), constipation (24%), diarrhea (35%), vomiting (26%), neutropenia (28%), anemia (22%), peripheral neuropathy (22%)
Tisotumab vedotin (HuMax-TF-ADC; TF011-MMAE) (Seattle Genetics, Inc.)	Tissue factor Fully human monoclonal antibody	MMAE Microtubule inhibitor	Protease cleavable valine-citrulline linker		ORR 13.9%	Phase II ongoing (NCT03657043)	Epistaxis (69%), fatigue (56%), nausea (52%), alopecia (44%), conjundivitis (43%), decreased appetite (36%), constipation (35%), diarrhea (30%), vorniting (29%), peripheral neuropathy (22%), dry eye (22%), and abdominal pain (20%).
Anetumab ravtansine (BAY 94–9343) (Bayer)	Mesothelin Fully human IgG1 (MF-T)	Ravtansine/ DM4 Microtubule inhibitor	Sulfo-PDB	3.2	ORR 9% with disease control rate of 59% Combination therapy: PLD: ORR 52%; DCR 86%	Phase II combination with bevacizumab ongoing (NCT03587311)	Reversible keratopathy, asymptomatic liver function test increases, and gastrointestinal disorders (% not publisher Combined therapy: Reversible comeal disorders, neutropenia, liver function test increases and gastrointestinal disorders (% not published)
DMOT4039A (RG7600) (Genentech, Inc.)	Mesothelin Humanized IgG1 antibody (h7D9.v3)	MMAE Microtubule inhibitor	Protease cleavable valine-citrulline linker	3.5	ORR 30% ^b	Phase I completed (NCT01469793)	Fatigue (46%), nausea (26%), diarrhea (22%), alopecia (20%), peripheral neuropathy (19%), anorexia (11%), pyrexia (11%)
BMS-986148 (Bristol-Myers Squibb)	Mesothelin Fully human IgG1 monoclonal antibody	Duocarmycin-related DNA alkylation	Protease cleavable valine-citrulline linker	1.4	ORR 9%	Phase I/IIa ongoing (NCT02341625)	Increased AST (43%), increased ALT (41%), fatigue (37%) , nausea (29%), decreased appetite (22%), and increased blood alkaline phosphatase (18%)
Sofituzumab vedotin (DMUC5754A) (Genentech, Inc.)	MUC16 Humanized IgG1 monoclonal antibody	MMAE Microtubule inhibitor	Protease cleavable valine-citrulline linker	3.5	ORR 17% ^b	Phase I completed; further development discontinued	Fatigue (30–57%), peripheral neuropathy (39%), nausea (37%), decreased appetite (22–30%), vorniting (28%), diarrhea (22–24%), alopecia (20–22%), pyrexia (20%), anemia (35%), neutropenia (26%), hypomagnesemia (22%)
Anti-MUC16 TDC (DMUC4064A) (Genentech, Inc.)	MUC16 Humanized anti- MUC16 IgG1	MMAE Microtubule inhibitor	Cysteine-engineered THIOMAB TM	2	ORR 45% ^b	Phase I completed (NCT02146313)	Blurred vision (65%), fatigue (40%), nausea (40%), peripheral neuropathy (35%), keratitis (30%), diarrhea (25%), and dry eyes (25%).

enter – ove

Calo (2021) Expert Opinion on Biological Therapy

Conclusions

- Suspected ovarian cancer should be evaluated by a gynecologic oncologist for surgery/timing of surgery
- Surgical staging/debulking remains a major part of treatment
- Genetic counseling/testing germline (for ALL) and somatic (advanced stage)
- Maintenance therapy is considered for advanced stage cases
- Still many unclear answers
- Despite lots of literature... individualized care remains central
- Clinical trials should be considered when possible

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute The James